Numerical and experimental investigation of (de)lithiation-induced strains in bicontinuous silicon-coated nickel inverse opal anodes

نویسندگان

  • Hoon-Hwe Cho
  • Matthew P.B. Glazer
  • Qian Xu
  • Heung Nam Han
  • David C. Dunand
چکیده

A volume expansion of up to ~310% occurs upon the lithiation of silicon in Si-coated nickel inverse opal anodes, which causes (de)lithiation-induced mismatch stresses and strains between the Si and Ni during battery cyclical (dis)charging. These (de)lithiation-induced mismatch strains and stresses are modeled via sequentially coupled diffusionand stress-based finite element (FE) analysis, which takes the mechanical contact between the Si and Ni phases into account, as well as the complex geometry and material properties of the Si-coated Ni inverse opal anode system. During lithiation, compressive strains up to 0.2% are developed in the Ni scaffold since the Si active layer expands. A rapid recovery of these lithiation-induced mismatch strains occurs during subsequent delithiation, though full recovery is not achieved. Strain histories upon multiple (de)lithiation cycles vary with the choice of various mechanical contact conditions employed between the two phases, since the mechanical contact properties determine how the contacted phases interact mechanically. The numerically predicted strains are compared with experimental strain data collected in operando using X-ray diffraction. The simulated strain histories agree with the measured data, enabling the possibility of predicting mechanical performance and eventual degradation using only numerical modeling. In particular, the FE model indicates that plastic deformation occurs first in the lithiated Si active layer, then in the Ni scaffold. © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Stresses and Strains during (De)Lithiation of Ni3Sn2-Coated Nickel Inverse-Opal Anodes.

Tin alloy-based anodes supported by inverse-opal nanoscaffolds undergo large volume changes from (de)lithiation during cyclic battery (dis)charging, affecting their mechanical stability. We perform continuum mechanics-based simulation to study the evolution of internal stresses and strains as a function of the geometry of the active layer(s): (i) thickness of Ni3Sn2 single layer (30 and 60 nm) ...

متن کامل

In Operando Strain Measurement of Bicontinuous Silicon- Coated Nickel Inverse Opal Anodes for Li-Ion Batteries

M. P. B. Glazer, Prof. D. C. Dunand Department of Materials Science and Engineering Northwestern University 2220 Campus Drive, Attention Room 2036 Evanston , IL 60208 , USA E-mail: [email protected] Dr. J. Cho, Prof. P. V. Braun Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Champaign , IL 61801 , USA Dr. J. Cho Gangneung Center Korea Basic Scie...

متن کامل

Three-dimensional metal scaffold supported bicontinuous silicon battery anodes.

Silicon-based lithium ion battery anodes are attracting significant attention because of silicon's exceptionally high lithium capacity. However, silicon's large volume change during cycling generally leads to anode pulverization unless the silicon is dispersed throughout a matrix in nanoparticulate form. Because pulverization results in a loss of electric connectivity, the reversible capacity o...

متن کامل

The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation

icle as: M.T. McDow hiation/delithiatio Abstract Applying surface coatings to alloying anodes for Li-ion batteries can improve rate capability and cycle life, but it is unclear how this second phase affects mechanical deformation during electrochemical reaction. Here, in-situ transmission electron microscopy is employed to investigate the electrochemical lithiation and delithiation of silicon n...

متن کامل

In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.

Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016